Low-Power Lossless Data Compression for Wireless Brain Electrophysiology

Wireless electrophysiology opens important possibilities for neuroscience, especially for recording brain activity in more natural contexts, where exploration and interaction are not restricted by the usual tethered devices. The limiting factor is transmission power and, by extension, battery life r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-05, Vol.22 (10), p.3676
Hauptverfasser: Cuevas-López, Aarón, Pérez-Montoyo, Elena, López-Madrona, Víctor J, Canals, Santiago, Moratal, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wireless electrophysiology opens important possibilities for neuroscience, especially for recording brain activity in more natural contexts, where exploration and interaction are not restricted by the usual tethered devices. The limiting factor is transmission power and, by extension, battery life required for acquiring large amounts of neural electrophysiological data. We present a digital compression algorithm capable of reducing electrophysiological data to less than 65.5% of its original size without distorting the signals, which we tested in vivo in experimental animals. The algorithm is based on a combination of delta compression and Huffman codes with optimizations for neural signals, which allow it to run in small, low-power Field-Programmable Gate Arrays (FPGAs), requiring few hardware resources. With this algorithm, a hardware prototype was created for wireless data transmission using commercially available devices. The power required by the algorithm itself was less than 3 mW, negligible compared to the power saved by reducing the transmission bandwidth requirements. The compression algorithm and its implementation were designed to be device-agnostic. These developments can be used to create a variety of wired and wireless neural electrophysiology acquisition systems with low power and space requirements without the need for complex or expensive specialized hardware.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22103676