Supplementing pre- and probiotic ingredients to feedlot steers: effects on health, growth performance, and physiological responses
•Synbiotic supplementation is the combination of probiotics and prebiotics.•This supplement was added to feedlot diets in conjunction or to replace antibiotics.•Feed efficiency was reduced when the synbiotic supplement replaced antibiotics.•The synbiotic feed did not alter general performance but im...
Gespeichert in:
Veröffentlicht in: | Animal (Cambridge, England) England), 2023-04, Vol.17 (4), p.100770-100770, Article 100770 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Synbiotic supplementation is the combination of probiotics and prebiotics.•This supplement was added to feedlot diets in conjunction or to replace antibiotics.•Feed efficiency was reduced when the synbiotic supplement replaced antibiotics.•The synbiotic feed did not alter general performance but improved carcass traits.•Synbiotic + antimicrobials can improve efficiency and carcass quality in cattle.
Feedlot diets are often enriched with additives to mitigate health disorders and promote cattle performance, including the feed-grade antimicrobials monensin and tylosin. However, alternative feeding strategies are warranted given the increasing regulations regarding the use of antimicrobials in feedlot diets. This study evaluated the performance, physiological, and health responses of feedlot cattle offered a synbiotic supplement (yeast-derived prebiotic + Bacillus subtilis probiotic), which replaced or was fed in conjunction with monensin and tylosin. Angus-influenced steers (n = 192) from four different cowherds were weaned on day −1 and transported (800 km) to the feedlot. Steers were allocated to 1 of 24 pens (eight steers/pen) upon arrival on day 0. Pens were assigned to receive (n = 8/treatment) a total-mixed ration (TMR) containing: (1) monensin and tylosin (RT; 360 mg/steer daily from Rumensin and 90 mg/steer daily from Tylan; Elanco Animal Health, Greenfield, IN, USA), (2) yeast-derived ingredient and B. subtilis probiotic (CC; 18 g/steer daily of Celmanax and 28 g/steer daily of Certillus; Church and Dwight Co., Inc., Princeton, NJ, USA), or (3) a combination of RT and CC (RTCC). Steers were slaughtered according to BW in four groups balanced by treatment and pens and received treatments for 252 ± 4 days. No treatment effects were detected (P ≥ 0.17) for steer BW gain and morbidity responses. Mean TMR intake was greater and gain:feed ratio was less (P ≤ 0.01) in CC compared with RT and RTCC steers. Mean plasma leptin concentration was greater (P ≤ 0.05) in CC compared with RT and RTCC steers. Steers receiving CC had greater (P ≤ 0.04) concentrations of plasma cortisol, haptoglobin, glucose, and beta-hydroxybutyrate, and less (P ≤ 0.05) concentration of non-esterified fatty acids compared with RT and RTCC steers on day 14 of the experiment. Carcass marbling was greater (P = 0.01) in CC compared with RT steers and tended to be greater (P = 0.07) in RTCC compared with RT steers. Proportion of carcasses that graded Choice or better and Longissimus muscl |
---|---|
ISSN: | 1751-7311 1751-732X |
DOI: | 10.1016/j.animal.2023.100770 |