BSTS synthesis guided by CALPHAD approach for phase equilibria and process optimization
This work presents a new method for processing single-crystal semiconductors designed by a computational method to lower the process temperature. This research study is based on a CALPHAD approach (ThermoCalc) to theoretically design processing parameters by utilizing theoretical phase diagrams. The...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2023-03, Vol.13 (1), p.3944-3944, Article 3944 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work presents a new method for processing single-crystal semiconductors designed by a computational method to lower the process temperature. This research study is based on a CALPHAD approach (ThermoCalc) to theoretically design processing parameters by utilizing theoretical phase diagrams. The targeted material composition consists of Bi–Se
2
–Te–Sb (BSTS). The semiconductor alloy contains three phases, hexagonal, rhombohedral-1, and rhombohedral-2 crystal structures, that are presented in the phase field of the theoretical pseudo-binary phase diagram. The semiconductor is also evaluated by applying Hume–Rothery rules along with the CALPHAD approach. Thermodynamic modelling suggests that single-crystals of BSTS can be grown at significantly lower temperatures and this is experimentally validated by low-temperature growth of single crystalline samples followed by exfoliation, compositional analysis, and diffraction. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-30976-3 |