Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light

All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2017-07, Vol.8 (1), p.16097-16097, Article 16097
Hauptverfasser: Luo, Xi-Wang, Zhou, Xingxiang, Xu, Jin-Shi, Li, Chuan-Feng, Guo, Guang-Can, Zhang, Chuanwei, Zhou, Zheng-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon’s internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities. Design of all-optical devices rely on large numbers of optical elements and precise control makes this approach challenging. The authors demonstrate that optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum lattices in a single main degenerate cavity.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms16097