Tracing sources of inorganic suspended particulate matter in the Great Barrier Reef lagoon, Australia

Water clarity on the inshore Great Barrier Reef (GBR) is greatly influenced by terrestrial runoff of suspended particulate matter (SPM). Catchment sediment tracing studies often do not extend into the marine environment, preventing the analysis of preferential marine transport. This study employs no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-07, Vol.14 (1), p.15651-13, Article 15651
Hauptverfasser: Bainbridge, Zoe T., Olley, Jon M., Lewis, Stephen E., Stevens, Thomas, Smithers, Scott G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Water clarity on the inshore Great Barrier Reef (GBR) is greatly influenced by terrestrial runoff of suspended particulate matter (SPM). Catchment sediment tracing studies often do not extend into the marine environment, preventing the analysis of preferential marine transport. This study employs novel collection and sediment tracing techniques to examine the transport of the terrigenous ‘mineral’ component of plume SPM within the GBR lagoon for two flood events. Utilising geochemical, radionuclide and clay mineral analysis, we trace terrigenous mineral sediments > 100 km from the river mouth. We show that the SPM geochemistry is highly influenced by particle-size fractionation, desorption, and dilution within the plume, rendering traditional tracing methods unviable. However, the ratios of rare earth elements (REE) to thorium (Th) provide stable tracers of mineral SPM transported across the catchment to marine continuum and allow the identification of discrete catchment sources for each flood event. Plume sediment radionuclides are also stable and consistent with sub-surface erosion sources.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-66561-5