Limited-Samples-Based Crop Classification Using a Time-Weighted Dynamic Time Warping Method, Sentinel-1 Imagery, and Google Earth Engine
Reliable crop type classification supports the scientific basis for food security and sustainable agricultural development. However, it still lacks a limited-samples-based crop classification method which is labor- and time-efficient. To this end, we used the Google Earth Engine (GEE) and Sentinel-1...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-02, Vol.15 (4), p.1112 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reliable crop type classification supports the scientific basis for food security and sustainable agricultural development. However, it still lacks a limited-samples-based crop classification method which is labor- and time-efficient. To this end, we used the Google Earth Engine (GEE) and Sentinel-1A/B SAR time series to develop eight types of crop classification strategies based on different sampling methods of central and scattered, different perspectives of object-based and pixel-based, and different classifiers of the Time-Weighted Dynamic Time Warping (TWDTW) and Random Forest (RF). We carried out 30-times classifications with different samples for each strategy to classify the crop types at the North Dakota–Minnesota border in the U.S. We then compared their classification accuracies and assessed the accuracy sensitivity to sample size. The results found that the TWDTW generally performed better than RF, especially for small-sample classification. Object-based classifications had higher accuracies than pixel-based classifications, and the object-based TWDTW had the highest accuracy. RF performed better in scattered sampling than the central sampling strategy. TWDTW performed better than RF in distinguishing soybean and dry bean with similar curves. The accuracies improved for all eight classification strategies with increasing sample size, and TWDTW was more robust, while RF was more sensitive to sample size change. RF required many more samples than TWDTW to achieve satisfactory accuracy, and it performed better than TWDTW when the sample size exceeded 50. The accuracy comparisons indicated that the TWDTW has stronger temporal and spatial generalization capabilities and has high potential applications for early, historical, and limited-samples-based crop type classification. The findings of our research are worthwhile contributions to the methodology and practices of crop type classification as well as sustainable agricultural development. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs15041112 |