A Comparative Study for Stock Market Forecast Based on a New Machine Learning Model
This research aims at applying the Artificial Organic Network (AON), a nature-inspired, supervised, metaheuristic machine learning framework, to develop a new algorithm based on this machine learning class. The focus of the new algorithm is to model and predict stock markets based on the Index Track...
Gespeichert in:
Veröffentlicht in: | Big data and cognitive computing 2024-04, Vol.8 (4), p.34 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research aims at applying the Artificial Organic Network (AON), a nature-inspired, supervised, metaheuristic machine learning framework, to develop a new algorithm based on this machine learning class. The focus of the new algorithm is to model and predict stock markets based on the Index Tracking Problem (ITP). In this work, we present a new algorithm, based on the AON framework, that we call Artificial Halocarbon Compounds, or the AHC algorithm for short. In this study, we compare the AHC algorithm against genetic algorithms (GAs), by forecasting eight stock market indices. Additionally, we performed a cross-reference comparison against results regarding the forecast of other stock market indices based on state-of-the-art machine learning methods. The efficacy of the AHC model is evaluated by modeling each index, producing highly promising results. For instance, in the case of the IPC Mexico index, the R-square is 0.9806, with a mean relative error of 7×10−4. Several new features characterize our new model, mainly adaptability, dynamism and topology reconfiguration. This model can be applied to systems requiring simulation analysis using time series data, providing a versatile solution to complex problems like financial forecasting. |
---|---|
ISSN: | 2504-2289 2504-2289 |
DOI: | 10.3390/bdcc8040034 |