Amphibians with infectious disease increase their reproductive effort: evidence for the terminal investment hypothesis

Mounting an immune response to fight disease is costly for an organism and can reduce investment in another life-history trait, such as reproduction. The terminal investment hypothesis predicts that an organism will increase reproductive effort when threatened by disease. The reproductive fitness of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open biology 2016-06, Vol.6 (6), p.150251
Hauptverfasser: Brannelly, Laura A., Webb, Rebecca, Skerratt, Lee F., Berger, Lee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mounting an immune response to fight disease is costly for an organism and can reduce investment in another life-history trait, such as reproduction. The terminal investment hypothesis predicts that an organism will increase reproductive effort when threatened by disease. The reproductive fitness of amphibians infected with the deadly fungal pathogen Batrachochytrium dendrobatidis (Bd) is largely unknown. In this study, we explored gametogenesis in two endangered and susceptible frog species, Pseudophryne corroboree and Litoria verreauxii alpina. Gametogenesis, both oogenesis and spermatogenesis, increased when animals were experimentally infected with Bd. In P. corroboree, infected males have thicker germinal epithelium, and a larger proportion of spermatocytes. In L. v. alpina, infected males had more spermatic cell bundles in total, and a larger proportion of spermatozoa bundles. In female L. v. alpina, ovaries and oviducts were larger in infected animals, and there were more cells present within the ovaries. Terminal investment has consequences for the evolution of disease resistance in declining species. If infected animals are increasing reproductive efforts and producing more offspring before succumbing to disease, it is possible that population-level selection for disease resistance will be minimized.
ISSN:2046-2441
2046-2441
DOI:10.1098/rsob.150251