Fluid-Structure Interaction Simulations of the Initiation Process of Cerebral Aneurysms

Hemodynamics during the growth process of cerebral aneurysms are incompletely understood. We developed a novel fluid-structure interaction analysis method for the identification of relevant scenarios of aneurysm onset. This method integrates both fluid dynamics and structural mechanics, as well as t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain sciences 2024-09, Vol.14 (10), p.977
Hauptverfasser: Nagy, Jozsef, Fenz, Wolfgang, Miron, Veronika M, Thumfart, Stefan, Maier, Julia, Major, Zoltan, Stefanits, Harald, Oberndorfer, Johannes, Stroh, Nico, Mazanec, Vanessa, Rauch, Philip-Rudolf, Gruber, Andreas, Gmeiner, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hemodynamics during the growth process of cerebral aneurysms are incompletely understood. We developed a novel fluid-structure interaction analysis method for the identification of relevant scenarios of aneurysm onset. This method integrates both fluid dynamics and structural mechanics, as well as their mutual interaction, for a comprehensive analysis. Patients with a single unruptured cerebral aneurysm were included. Overall, three scenarios were identified. In scenario A, wall shear stress (WSS) was low, and the oscillatory shear index (OSI) was high in large areas within the region of aneurysm onset (RAO). In scenario B, the quantities indicated a reversed behavior, where WSS was high and OSI was low. In the last scenario C, a behavior in-between was found, with scenarios A and B coexisting simultaneously in the RAO. Structural mechanics demonstrated a similar but independent trend. Further, we analyzed the change in hemodynamics between the onset and a fully developed aneurysm. While scenarios A and C remained unchanged during aneurysm growth, 47% of aneurysms in scenario B changed into scenario A and 20% into scenario C. In conclusion, these findings suggest that WSS and the OSI are reciprocally regulated, and both low and high WSS/OSI conditions can lead to aneurysm onset.
ISSN:2076-3425
2076-3425
DOI:10.3390/brainsci14100977