On the 1-error linear complexity of two-prime generator

Jing et al. dealed with all possible Whiteman generalized cyclotomic binary sequences $ s(a, b, c) $ with period $ N = pq $, where $ (a, b, c) \in \{0, 1\}^3 $ and $ p, q $ are distinct odd primes (Jing et al. arXiv:2105.10947v1, 2021). They have determined the autocorrelation distribution and the 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics 2022, Vol.7 (4), p.5821-5829
Hauptverfasser: Yan, Tongjiang, Ainiwaer, Pazilaiti, Du, Lianbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Jing et al. dealed with all possible Whiteman generalized cyclotomic binary sequences $ s(a, b, c) $ with period $ N = pq $, where $ (a, b, c) \in \{0, 1\}^3 $ and $ p, q $ are distinct odd primes (Jing et al. arXiv:2105.10947v1, 2021). They have determined the autocorrelation distribution and the 2-adic complexity of these sequences in a unified way by using group ring language and a version of quadratic Gauss sums. In this paper, we determine the linear complexity and the 1-error linear complexity of $ s(a, b, c) $ in details by using the discrete Fourier transform (DFT). The results indicate that the linear complexity of $ s(a, b, c) $ is large enough and stable in most cases.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2022322