Scaling collapse and structure functions: identifying self-affinity in finite length time series

Empirical determination of the scaling properties and exponents of time series presents a formidable challenge in testing, and developing, a theoretical understanding of turbulence and other out-of-equilibrium phenomena. We discuss the special case of self affine time series in the context of a stoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear processes in geophysics 2005-08, Vol.12 (6), p.767-774
Hauptverfasser: Chapman, S. C., Hnat, B., Rowlands, G., Watkins, N. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Empirical determination of the scaling properties and exponents of time series presents a formidable challenge in testing, and developing, a theoretical understanding of turbulence and other out-of-equilibrium phenomena. We discuss the special case of self affine time series in the context of a stochastic process. We highlight two complementary approaches to the differenced variable of the data: i) attempting a scaling collapse of the Probability Density Functions which should then be well described by the solution of the corresponding Fokker-Planck equation and ii) using structure functions to determine the scaling properties of the higher order moments. We consider a method of conditioning that recovers the underlying self affine scaling in a finite length time series, and illustrate it using a Lévy flight.
ISSN:1607-7946
1023-5809
1607-7946
DOI:10.5194/npg-12-767-2005