Seasonal Diet Changes and Trophic Links of Cold-Water Fish ( Coregonus albula ) within a Northern Lake Ecosystem

The seasonal feeding patterns of the cold-adapted fish, , are poorly studied in high-latitude lakes but could provide insight for predicting the effects of global warming. We examined vendace's diet composition, traced the carbon and nitrogen isotope ratios from producers to consumers in the fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Animals (Basel) 2024-01, Vol.14 (3), p.394
Hauptverfasser: Berezina, Nadezhda A, Terentjev, Piotr M, Zubova, Elena M, Tsurikov, Sergey M, Maximov, Alexey A, Sharov, Andrey N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The seasonal feeding patterns of the cold-adapted fish, , are poorly studied in high-latitude lakes but could provide insight for predicting the effects of global warming. We examined vendace's diet composition, traced the carbon and nitrogen isotope ratios from producers to consumers in the food web, and estimated vendace's trophic position in a subarctic lake (the White Sea basin). Results showed the vendace to be a typical euryphagous fish, but clear seasonal differences were found in the relative importance of plankton and benthos in the diet. The vendace consumed primarily benthic amphipods in the summer, planktonic cladocerans in the autumn, and copepods in the winter-spring (under ice); larvae of aquatic insects were the second-most important food items throughout the year. Because of the substantial proportion of fish embryos in its diet, the vendace had a trophic position similar to that of a predatory fish (perch). The Bayesian food source-mixing model revealed that the majority of vendace energy derives from planktonic copepods. The dominant had the lowest carbon isotope values, suggesting a carbon-depleted diet typical for methanotrophic bacteria, as its probable food source was in a lake under ice. Understanding the feeding patterns of vendace provides information to better predict the potential biotic effects of environmental change on lake ecosystems.
ISSN:2076-2615
2076-2615
DOI:10.3390/ani14030394