Noether’s Theorem and Symmetry

In Noether’s original presentation of her celebrated theorem of 1918, allowance was made for the dependence of the coefficient functions of the differential operator, which generated the infinitesimal transformation of the action integral upon the derivatives of the dependent variable(s), the so-cal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2018-12, Vol.10 (12), p.744
Hauptverfasser: Halder, Amlan, Paliathanasis, Andronikos, Leach, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Noether’s original presentation of her celebrated theorem of 1918, allowance was made for the dependence of the coefficient functions of the differential operator, which generated the infinitesimal transformation of the action integral upon the derivatives of the dependent variable(s), the so-called generalized, or dynamical, symmetries. A similar allowance is to be found in the variables of the boundary function, often termed a gauge function by those who have not read the original paper. This generality was lost after texts such as those of Courant and Hilbert or Lovelock and Rund confined attention to point transformations only. In recent decades, this diminution of the power of Noether’s theorem has been partly countered, in particular in the review of Sarlet and Cantrijn. In this Special Issue, we emphasize the generality of Noether’s theorem in its original form and explore the applicability of even more general coefficient functions by allowing for nonlocal terms. We also look for the application of these more general symmetries to problems in which parameters or parametric functions have a more general dependence on the independent variables.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym10120744