Accurate Step Count with Generalized and Personalized Deep Learning on Accelerometer Data
Physical activity (PA) is globally recognized as a pillar of general health. Step count, as one measure of PA, is a well known predictor of long-term morbidity and mortality. Despite its popularity in consumer devices, a lack of methodological standards and clinical validation remains a major impedi...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2022-05, Vol.22 (11), p.3989 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Physical activity (PA) is globally recognized as a pillar of general health. Step count, as one measure of PA, is a well known predictor of long-term morbidity and mortality. Despite its popularity in consumer devices, a lack of methodological standards and clinical validation remains a major impediment to step count being accepted as a valid clinical endpoint. Previous works have mainly focused on device-specific step-count algorithms and often employ sensor modalities that may not be widely available. This may limit step-count suitability in clinical scenarios. In this paper, we trained neural network models on publicly available data and tested on an independent cohort using two approaches: generalization and personalization. Specifically, we trained neural networks on accelerometer signals from one device and either directly applied them or adapted them individually to accelerometer data obtained from a separate subject cohort wearing multiple distinct devices. The best models exhibited highly accurate step-count estimates for both the generalization (96-99%) and personalization (98-99%) approaches. The results demonstrate that it is possible to develop device-agnostic, accelerometer-only algorithms that provide highly accurate step counts, positioning step count as a reliable mobility endpoint and a strong candidate for clinical validation. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22113989 |