Multimorbidity combinations, costs of hospital care and potentially preventable emergency admissions in England: A cohort study
Patients with multimorbidities have the greatest healthcare needs and generate the highest expenditure in the health system. There is an increasing focus on identifying specific disease combinations for addressing poor outcomes. Existing research has identified a small number of prevalent "clus...
Gespeichert in:
Veröffentlicht in: | PLoS medicine 2021-01, Vol.18 (1), p.e1003514-e1003514 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Patients with multimorbidities have the greatest healthcare needs and generate the highest expenditure in the health system. There is an increasing focus on identifying specific disease combinations for addressing poor outcomes. Existing research has identified a small number of prevalent "clusters" in the general population, but the limited number examined might oversimplify the problem and these may not be the ones associated with important outcomes. Combinations with the highest (potentially preventable) secondary care costs may reveal priority targets for intervention or prevention. We aimed to examine the potential of defining multimorbidity clusters for impacting secondary care costs.
We used national, Hospital Episode Statistics, data from all hospital admissions in England from 2017/2018 (cohort of over 8 million patients) and defined multimorbidity based on ICD-10 codes for 28 chronic conditions (we backfilled conditions from 2009/2010 to address potential undercoding). We identified the combinations of multimorbidity which contributed to the highest total current and previous 5-year costs of secondary care and costs of potentially preventable emergency hospital admissions in aggregate and per patient. We examined the distribution of costs across unique disease combinations to test the potential of the cluster approach for targeting interventions at high costs. We then estimated the overlap between the unique combinations to test potential of the cluster approach for targeting prevention of accumulated disease. We examined variability in the ranks and distributions across age (over/under 65) and deprivation (area level, deciles) subgroups and sensitivity to considering a smaller number of diseases. There were 8,440,133 unique patients in our sample, over 4 million (53.1%) were female, and over 3 million (37.7%) were aged over 65 years. No clear "high cost" combinations of multimorbidity emerged as possible targets for intervention. Over 2 million (31.6%) patients had 63,124 unique combinations of multimorbidity, each contributing a small fraction (maximum 3.2%) to current-year or 5-year secondary care costs. Highest total cost combinations tended to have fewer conditions (dyads/triads, most including hypertension) affecting a relatively large population. This contrasted with the combinations that generated the highest cost for individual patients, which were complex sets of many (6+) conditions affecting fewer persons. However, all combinations co |
---|---|
ISSN: | 1549-1676 1549-1277 1549-1676 |
DOI: | 10.1371/journal.pmed.1003514 |