The Microbial Diversity of Sherry Wines
The principal role of wine yeast is to transform efficiently the grape-berries’ sugars to ethanol, carbon dioxide, and other metabolites, without the production of off-flavors. Wine yeast strains are able to ferment musts, while other commercial or laboratory strains fail to do so. The genetic diffe...
Gespeichert in:
Veröffentlicht in: | Fermentation (Basel) 2018-03, Vol.4 (1), p.19 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The principal role of wine yeast is to transform efficiently the grape-berries’ sugars to ethanol, carbon dioxide, and other metabolites, without the production of off-flavors. Wine yeast strains are able to ferment musts, while other commercial or laboratory strains fail to do so. The genetic differences that characterize wine yeast strains in contrast to the biological ageing of the veil-forming yeasts in Sherry wines are poorly understood. Saccharomyces cerevisiae strains frequently exhibit rather specific phenotypic features needed for adaptation to a special environment, like fortified wines with ethanol up to 15% (v/v), known as Sherry wines. Factors that affect the correct development of the veil of flor during ageing are also reviewed, along with the related aspects of wine composition, biofilm formation processes, and yeast autolysis. This review highlights the importance of yeast ecology and yeast metabolic reactions in determining Sherry wine quality and the wealth of untapped indigenous microorganisms co-existing with the veil-forming yeast strains. It covers the complexity of the veil forming wine yeasts’ genetic features, and the genetic techniques often used in strain selection and monitoring during fermentation or biological ageing. Finally, the outlook for new insights to protect and to maintain the microbiota of the Sherry wines will be discussed. |
---|---|
ISSN: | 2311-5637 2311-5637 |
DOI: | 10.3390/fermentation4010019 |