Enhancing interfacial interactions of cocontinuous poly(lactic acid)/polyethylene blends using vinylsilane grafted carbon nanotubes as generic reactive compatibilizers

Vinylsilane grafted carbon nanotubes (VCNTs) can act as reactive compatibilizers for cocontinuous poly(lactic acid)/high-density polyethylene (PLA/HDPE) blends, with the aid of organic peroxides initiated radical reactions. The reactively compatibilized PLA/HDPE/V CNTs blend nanocomposites exhibit s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Express polymer letters 2022-05, Vol.16 (5), p.524-539
Hauptverfasser: Wang, Bin, Zheng, Qiaolie, Li, Mengjia, Wang, Sisi, Xiao, Shanglin, Li, Xiping, Liu, Hesheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vinylsilane grafted carbon nanotubes (VCNTs) can act as reactive compatibilizers for cocontinuous poly(lactic acid)/high-density polyethylene (PLA/HDPE) blends, with the aid of organic peroxides initiated radical reactions. The reactively compatibilized PLA/HDPE/V CNTs blend nanocomposites exhibit strong interfacial interactions, as can be reflected by the remarkably increased storage modulus at low frequencies. Due to strong interfacial interactions, the VCNTs act as highly efficient nucleating agents for the PLA component. With 2.0 wt% of VCNTs, the crystallinity of PLA component reaches a value of 33.8% after melt cooling, and thus cold crystallization can no longer be observed upon heating. Thanks to the high crystallinity of the PLA component, the reactively compatibilized blend nanocomposite with 2.0 wt% of VCNTs shows a much higher elastic modulus than those of pristine PLA/HDPE blends and uncompatibilized blend nanocomposites in the temperature range of 60 to 80 °C. Moreover, the reactively compatibilized blend nanocomposites exhibit an obvious increase trend in tensile strength with increasing the content of VCNTs, due to stronger interfacial interactions. This work provides a generic strategy for compatibilizing and reinforcing immiscible polymer blend nanocomposites using reactive carbon nanotubes.
ISSN:1788-618X
1788-618X
DOI:10.3144/expresspolymlett.2022.39