Solutions and Stability of Generalized Kannappan’s and Van Vleck’s Functional Equations

We study the solutions of the integral Kannappan’s and Van Vleck’s functional equations ∫ f(xyt)dµ(t)+∫ f(xσ(y)t)dµ(t)= 2f(x)f(y), x,y ∈ S; ∫ f(xσ(y)t)dµ(t)-∫ f(xyt)dµ(t)= 2f(x)f(y), x,y ∈ S; where S is a semigroup, σ is an involutive automorphism of S and µ is a linear combination of Dirac measures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales mathematicae Silesianae 2018-09, Vol.32 (1), p.169-200
Hauptverfasser: Elqorachi, Elhoucien, Redouani, Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the solutions of the integral Kannappan’s and Van Vleck’s functional equations ∫ f(xyt)dµ(t)+∫ f(xσ(y)t)dµ(t)= 2f(x)f(y), x,y ∈ S; ∫ f(xσ(y)t)dµ(t)-∫ f(xyt)dµ(t)= 2f(x)f(y), x,y ∈ S; where S is a semigroup, σ is an involutive automorphism of S and µ is a linear combination of Dirac measures ( ᵟ , such that for all i ∈ I, z is in the center of S. We show that the solutions of these equations are closely related to the solutions of the d’Alembert’s classic functional equation with an involutive automorphism. Furthermore, we obtain the superstability theorems for these functional equations in the general case, where σ is an involutive morphism.
ISSN:0860-2107
2391-4238
DOI:10.1515/amsil-2017-0006