Potential of a Novel Chemical Compound Targeting Matrix Metalloprotease-13 for Early Osteoarthritis: An In Vitro Study
Osteoarthritis is a progressive disease characterized by cartilage destruction in the joints. Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) play key roles in osteoarthritis progression. In this study, we screened a chemical compound lib...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2022-02, Vol.23 (5), p.2681 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Osteoarthritis is a progressive disease characterized by cartilage destruction in the joints. Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) play key roles in osteoarthritis progression. In this study, we screened a chemical compound library to identify new drug candidates that target MMP and ADAMTS using a cytokine-stimulated OUMS-27 chondrosarcoma cells. By screening PCR-based mRNA expression, we selected 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide as a potential candidate. We found that 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide attenuated IL-1β-induced MMP13 mRNA expression in a dose-dependent manner, without causing serious cytotoxicity. Signaling pathway analysis revealed that 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide attenuated ERK- and p-38-phosphorylation as well as JNK phosphorylation. We then examined the additive effect of 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide in combination with low-dose betamethasone on IL-1β-stimulated cells. Combined treatment with 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide and betamethasone significantly attenuated MMP13 and ADAMTS9 mRNA expression. In conclusion, we identified a potential compound of interest that may help attenuate matrix-degrading enzymes in the early osteoarthritis-affected joints. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms23052681 |