The role of intervention mechanisms on a self-organized system: dynamics of a sandpile with site reinforcement
We revisit the sandpile model and examine the effect of introducing site-dependent thresholds that increase over time based on the generated avalanche size. This is inspired by the simplest means of introducing stability into a self-organized system: the locations of collapse are repaired and reinfo...
Gespeichert in:
Veröffentlicht in: | Journal of physic, complexity complexity, 2024-03, Vol.5 (1), p.15012 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We revisit the sandpile model and examine the effect of introducing site-dependent thresholds that increase over time based on the generated avalanche size. This is inspired by the simplest means of introducing stability into a self-organized system: the locations of collapse are repaired and reinforced. Statistically, for the case of finite driving times, we observe that the site-dependent reinforcements decrease the occurrence of very large avalanches, leading to an effective global stabilization. Interestingly, however, long simulation runs indicate that the system will persist in a state of self-organized criticality (SOC), recovering the power-law distributions with a different exponent as the original sandpile. These results suggest that tipping the heavy-tailed power-laws into more equitable and normal statistics may require unrealistic scales of intervention for real-world systems, and that, in the long run, SOC mechanisms still emerge. This may help explain the robustness of power-law statistics for many complex systems. |
---|---|
ISSN: | 2632-072X 2632-072X |
DOI: | 10.1088/2632-072X/ad28ff |