Almost Existentially Closed Models in Positive Logic
This paper explores the concept of almost positively closed models in the framework of positive logic. To accomplish this, we initially define various forms of the positive amalgamation property, such as h-amalgamation and symmetric and asymmetric amalgamation properties. Subsequently, we introduce...
Gespeichert in:
Veröffentlicht in: | International journal of mathematics and mathematical sciences 2024-04, Vol.2024, p.1-8 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper explores the concept of almost positively closed models in the framework of positive logic. To accomplish this, we initially define various forms of the positive amalgamation property, such as h-amalgamation and symmetric and asymmetric amalgamation properties. Subsequently, we introduce certain structures that enjoy these properties. Following this, we introduce the concepts of Δ-almost positively closed and Δ-weekly almost positively closed. The classes of these structures contain and exhibit properties that closely resemble those of positive existentially closed models. In order to investigate the relationship between positive almost closed and positive strong amalgamation properties, we first introduce the sets of positive algebraic formulas ET and AlgT and the properties of positive strong amalgamation. We then show that if a model A of a theory T is a ET+A-weekly almost positively closed, then A is a positive strong amalgamation basis of T, and if A is a positive strong amalgamation basis of T, then A is AlT+A-weekly almost positively closed. |
---|---|
ISSN: | 0161-1712 1687-0425 |
DOI: | 10.1155/2024/5595281 |