Almost Existentially Closed Models in Positive Logic

This paper explores the concept of almost positively closed models in the framework of positive logic. To accomplish this, we initially define various forms of the positive amalgamation property, such as h-amalgamation and symmetric and asymmetric amalgamation properties. Subsequently, we introduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mathematics and mathematical sciences 2024-04, Vol.2024, p.1-8
1. Verfasser: Belkasmi, Mohammed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper explores the concept of almost positively closed models in the framework of positive logic. To accomplish this, we initially define various forms of the positive amalgamation property, such as h-amalgamation and symmetric and asymmetric amalgamation properties. Subsequently, we introduce certain structures that enjoy these properties. Following this, we introduce the concepts of Δ-almost positively closed and Δ-weekly almost positively closed. The classes of these structures contain and exhibit properties that closely resemble those of positive existentially closed models. In order to investigate the relationship between positive almost closed and positive strong amalgamation properties, we first introduce the sets of positive algebraic formulas ET and AlgT and the properties of positive strong amalgamation. We then show that if a model A of a theory T is a ET+A-weekly almost positively closed, then A is a positive strong amalgamation basis of T, and if A is a positive strong amalgamation basis of T, then A is AlT+A-weekly almost positively closed.
ISSN:0161-1712
1687-0425
DOI:10.1155/2024/5595281