Scan-Rate-Dependent Ion Current Rectification in Bipolar Interfacial Nanopores

This study presents a theoretical investigation into the voltammetric behavior of bipolar interfacial nanopores due to the effect of potential scan rate (1-1000 V/s). Finite element method (FEM) is utilized to explore the current-voltage (I-V) properties of bipolar interfacial nanopores at different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2024-09, Vol.15 (9), p.1176
Hauptverfasser: Zhang, Xiaoling, Wang, Yunjiao, Zheng, Jiahui, Yang, Chen, Wang, Deqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents a theoretical investigation into the voltammetric behavior of bipolar interfacial nanopores due to the effect of potential scan rate (1-1000 V/s). Finite element method (FEM) is utilized to explore the current-voltage (I-V) properties of bipolar interfacial nanopores at different bulk salt concentrations. The results demonstrate a strong impact of the scan rate on the I-V response of bipolar interfacial nanopores, particularly at relatively low concentrations. Hysteresis loops are observed in bipolar interfacial nanopores under specific scan rates and potential ranges and divided by a cross-point potential that remains unaffected by the scan rate employed. This indicates that the current in bipolar interfacial nanopores is not just reliant on the bias potential that is imposed but also on the previous conditions within the nanopore, exhibiting history-dependent or memory effects. This scan-rate-dependent current-voltage response is found to be significantly influenced by the length of the nanopore (membrane thickness). Thicker membranes exhibit a more pronounced scan-rate-dependent phenomenon, as the mass transfer of ionic species is slower relative to the potential scan rate. Additionally, unlike conventional bipolar nanopores, the ion current passing through bipolar interfacial nanopores is minimally affected by the membrane thickness, making it easier to detect.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi15091176