ON ONE INEQUALITY OF DIFFERENT METRICS FOR TRIGONOMETRIC POLYNOMIALS

We study the sharp inequality between the uniform norm and \(L^p(0,\pi/2)\)-norm of polynomials in the system \(\mathscr{C}=\{\cos (2k+1)x\}_{k=0}^\infty\) of cosines with odd harmonics. We investigate the limit behavior of the best constant in this inequality with respect to the order \(n\) of poly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ural mathematical journal 2022-12, Vol.8 (2), p.27
Hauptverfasser: Arestov, Vitalii V., Deikalova, Marina V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the sharp inequality between the uniform norm and \(L^p(0,\pi/2)\)-norm of polynomials in the system \(\mathscr{C}=\{\cos (2k+1)x\}_{k=0}^\infty\) of cosines with odd harmonics. We investigate the limit behavior of the best constant in this inequality with respect to the order \(n\) of polynomials as \(n\to\infty\) and provide a characterization of the extremal polynomial in the inequality for a fixed order of polynomials.
ISSN:2414-3952
2414-3952
DOI:10.15826/umj.2022.2.003