Vehicle classification applying many‐to‐one input network architecture in 77‐GHz FMCW radar

In this paper, we proposed a Many‐to‐One Input Network Architecture (MOINA) for the classification of similar structured vehicles (bus, truck and car). The inputs of the architecture are the multiple‐masked region‐of‐interest of the same detected vehicle from Range‐Doppler maps, which are acquired b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET Radar, Sonar & Navigation Sonar & Navigation, 2022-02, Vol.16 (2), p.267-277
Hauptverfasser: Jiang, Haodong, Zhang, Li, Wang, Ke, Guo, Yaozu, Yan, Feng, Ji, Xiaoli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we proposed a Many‐to‐One Input Network Architecture (MOINA) for the classification of similar structured vehicles (bus, truck and car). The inputs of the architecture are the multiple‐masked region‐of‐interest of the same detected vehicle from Range‐Doppler maps, which are acquired by FMCW radar. The proposed method is trained with a supervised system yielding a classification accuracy of 98%. MOINA shows good classification performance in a practical situation. Besides, the F1‐score of buses, trucks and cars are 98.7%, 98.0% and 97.6%, respectively.
ISSN:1751-8784
1751-8792
DOI:10.1049/rsn2.12181