Quantum Chemical and Experimental Evaluation of a 4-Amino-Antipyrine Based Schiff Base as Corrosion Inhibitor for Steel Material
Electrochemical experiments such as potentiodynamic polarization, electrochemical impedance spectroscopy, and gravimetric studies have been used to examine the corrosion inhibitory efficacy of 4-[(4-nitrobenzylidene)-amino]-antipyrine (4-NBAAP) on mild steel (MS) in 1 M HCl. 4-NBAAP inhibits the cor...
Gespeichert in:
Veröffentlicht in: | ACS omega 2024-03, Vol.9 (11), p.13262-13273 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrochemical experiments such as potentiodynamic polarization, electrochemical impedance spectroscopy, and gravimetric studies have been used to examine the corrosion inhibitory efficacy of 4-[(4-nitrobenzylidene)-amino]-antipyrine (4-NBAAP) on mild steel (MS) in 1 M HCl. 4-NBAAP inhibits the corrosion of MS through a mixed inhibition mechanism, according to the electrochemical investigation. The efficiency of 4-NBAAP increases with an increase in the inhibitor concentration and decreases with an increase in temperature. The adsorption of 4-NBAAP molecules on the MS surface follows the Langmuir adsorption isotherm. To find the relationship between the 4-NBAAP molecular structure and inhibitive effect, a few thermodynamic parameters were computed. The experimental results obtained from gravimetric and different electrochemical investigations prove the superiority of the inhibitor at higher concentrations in controlling the corrosion process of the steel in aggressive environments. Also, quantum chemical studies were performed to provide further insights into the inhibition mechanism. |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.3c10048 |