Battery deactivation with redox shuttles for safe and efficient recycling

To safely recycle spent lithium-ion batteries (LIBs), their deactivation as a pretreatment is essential. However, the conventional deactivation methods, mainly inducing an external short circuit, cannot be applied to LIBs with disconnected electrical circuits or Li deposited, despite their safety ri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-02, Vol.14 (1), p.3448-3448, Article 3448
Hauptverfasser: Mikita, Riho, Suzumura, Akitoshi, Kondo, Hiroki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To safely recycle spent lithium-ion batteries (LIBs), their deactivation as a pretreatment is essential. However, the conventional deactivation methods, mainly inducing an external short circuit, cannot be applied to LIBs with disconnected electrical circuits or Li deposited, despite their safety risk. Here, we propose a deactivation method using redox shuttles (RSs). The addition of an RS with redox potentials located between the two electrode potentials into a LIB electrochemically induces an internal short circuit with or without disconnected electrical circuits. A fully charged LIB discharges to approximately 0 V when a deactivation agent containing ferrocene or phenothiazine as an RS is added. Moreover, we demonstrate that RSs introduced into LIB can simultaneously dissolve Li deposited on the negative electrode surface and return it to the positive electrode as mobile ions. These characteristics of our method contribute to the improvement in safety and collection rate of Li in the recycling processes, promoting the sustainability of LIBs.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-53895-3