Valorization of granite micronized stones wastes for eco-friendly production of fired clay bricks
Construction and mining industries around the globe have been criticized for production of enormous solid wastes that have potential environmental impacts. Therefore, this study presents a feasible approach to recover and utilize granite micronized stones waste for production of eco-friendly bricks....
Gespeichert in:
Veröffentlicht in: | SN applied sciences 2021-11, Vol.3 (11), p.845-10, Article 845 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Construction and mining industries around the globe have been criticized for production of enormous solid wastes that have potential environmental impacts. Therefore, this study presents a feasible approach to recover and utilize granite micronized stones waste for production of eco-friendly bricks. This research work, aimed at substituting a natural clay with granite powder to produce value-added bricks with pronounced physical–mechanical properties. The micronized granite waste stones were crushed and ground to obtain a fine powder sample. Thereafter, different batch compositions containing a varied proportions of granite powder were prepared and fired at different sintering temperatures: 900, 1000 and 1100 °C. The raw materials and bricks were characterized for their chemical compositions, microstructural, mineralogical and physical–mechanical properties. The results showed that, an increase in granite waste powder and sintering temperature enhanced the quality of fired clay bricks in terms of mechanical strength and decreased simultaneously the apparent porosity and water absorption. The final experimental approach showed that, the possibility to produce eco-friendly bricks containing up to 30 wt% of granite powder with enhanced engineering properties fired at 1100 °C is promising.
Graphic abstract |
---|---|
ISSN: | 2523-3963 2523-3971 |
DOI: | 10.1007/s42452-021-04828-6 |