A Track Initiation Method for FM-based Passive Radar Network Based on Multiple Elementary Hypotheses

Passive radars based on FM radio signals have low detection probability, high false alarm rates and poor accuracy, presenting considerable challenges to target tracking in radar networks. Moreover, a high false alarm rate increases the computational burden and puts forward high requirements for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of radars = Lei da xue bao 2024-06, Vol.13 (3), p.601-612
Hauptverfasser: Yueyang HU, Jianxin YI, Xianrong WAN, Feng CHENG, Sulin XU
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Passive radars based on FM radio signals have low detection probability, high false alarm rates and poor accuracy, presenting considerable challenges to target tracking in radar networks. Moreover, a high false alarm rate increases the computational burden and puts forward high requirements for the real-time performance of networking algorithms. In addition, low detection probability and poor azimuth accuracy result in a lack of redundant information, making measurement association and track initiation challenging. To address these issues, this paper proposes an FM-based passive radar network based on the concepts of elementary hypothesis points and elementary hypothesis track, as well as a track initiation algorithm. First, we construct possible low-dimensional association hypotheses and solve for their corresponding elementary hypothesis points. Subsequently, we associate elementary hypothesis points from different frames to form multiple possible elementary hypothesis tracks. Finally, by combining multi-frame radar network data for hypothesis track judgment, we confirm the elementary hypothesis tracks corresponding to the real targets, and eliminate the false elementary hypothesis tracks caused by incorrect associations. Result reveal that the proposed algorithm has lower computational complexity and faster track initiation speed than existing algorithms. Moreover, we verified the effectiveness of the proposed algorithm using simulation and experimental results.
ISSN:2095-283X
DOI:10.12000/JR23155