Using Smartphones to Locate Trapped Victims in Disasters

Large and unaccounted numbers of victims in disasters, events, or fires are often trapped in buildings or debris, and must be located and rescued as soon as possible. This study transforms smartphones into indoor locating tools without extra modification or complicated program installation, consider...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-10, Vol.22 (19), p.7502
Hauptverfasser: Tai, Yenpo, Yu, Teng-To
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large and unaccounted numbers of victims in disasters, events, or fires are often trapped in buildings or debris, and must be located and rescued as soon as possible. This study transforms smartphones into indoor locating tools without extra modification or complicated program installation, considering smartphones are likely to be carried when disasters strike. The study creates a system that converts smartphones into a lifesaving tool for trapped victims and rescuers. This study employs the Bluetooth beacon in smartphones to send signals using its low power consumption feature. The signal could continue transmitting for rescuers to locate trapped victims for longer. Rescuers could use the Bluetooth function on a regular notebook computer to search such signals without any hardware implementation or modification, allowing them to locate and determine the position of many trapped victims simultaneously. Implementing this system will decrease the search and rescue team’s need to enter unsafe areas and increase their rescue speed, a critical factor for the survival of trapped victims. Furthermore, when disasters strike, the smartphone calling function might not work, and the trapped victim might be too weak to call for help. Thus, autoreply messages from victims’ smartphones could help them be located within a 2-m error, even if covered by fallen debris such as wood piles or tiles. This effort will increase the chance of finding trapped victims within the golden rescue hours and reduce the exposure time of search and rescue teams in unsafe environments.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22197502