Estimating of Non-Darcy Flow Coefficient in Artificial Porous Media

This study conducted a radial flow experiment to investigate the existence of non-Darcy flow and calculate the non-Darcy “inertia” coefficient; the experiment was performed on seven cylindrical perforated artificial porous media samples. Two hundred thirty-one runs were performed, and the pressure d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2022-02, Vol.15 (3), p.1197
Hauptverfasser: Elsanoose, Abadelhalim, Abobaker, Ekhwaiter, Khan, Faisal, Rahman, Mohammad Azizur, Aborig, Amer, Butt, Stephen D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study conducted a radial flow experiment to investigate the existence of non-Darcy flow and calculate the non-Darcy “inertia” coefficient; the experiment was performed on seven cylindrical perforated artificial porous media samples. Two hundred thirty-one runs were performed, and the pressure drop was reported. The non-Darcy coefficient β was calculated and compared with available in the literature. The results showed that the non-Darcy coefficient decreased nonlinearly and converged on a value within a specific range as the permeability increased. Nonetheless, it was found that the non-Darcy flow exists even in the very low flow rate deployed in this study. In addition, it has been found that the non-Darcy effect is not due to turbulence but also the inertial effect. The existence of a non-Darcy flow was confirmed for all the investigated samples. The Forchheimer numbers for airflow at varied flow rates are determined using experimentally measured superficial velocity, permeability, and non-Darcy coefficient.
ISSN:1996-1073
1996-1073
DOI:10.3390/en15031197