Estimates for evolutionary partial differential equations in classical function spaces

We establish new local and global estimates for evolutionary partial differential equations in classical Banach and quasi-Banach spaces that appear most frequently in the theory of partial differential equations. More specifically, we obtain optimal (local in time) estimates for the solution to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum of mathematics. Sigma 2023, Vol.11, Article e76
Hauptverfasser: Castro, Alejandro J., Israelsson, Anders, Staubach, Wolfgang, Yerlanov, Madi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish new local and global estimates for evolutionary partial differential equations in classical Banach and quasi-Banach spaces that appear most frequently in the theory of partial differential equations. More specifically, we obtain optimal (local in time) estimates for the solution to the Cauchy problem for variable-coefficient evolutionary partial differential equations. The estimates are achieved by introducing the notions of Schrödinger and general oscillatory integral operators with inhomogeneous phase functions and prove sharp local and global regularity results for these in Besov–Lipschitz and Triebel–Lizorkin spaces.
ISSN:2050-5094
2050-5094
DOI:10.1017/fms.2023.76