The Characterization of Subcutaneous Adipose Tissue in Sunit Sheep at Different Growth Stages: A Comprehensive Analysis of the Morphology, Fatty Acid Profile, and Metabolite Profile

Adipose tissue is a crucial economically significant trait that significantly influences the meat quality and growth performance of domestic animals. To reveal the changes in adipose tissue metabolism during the growth of naturally grazing sheep, we evaluated the thickness, adipocyte morphology, fat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foods 2024-02, Vol.13 (4), p.544
Hauptverfasser: Han, Yunfei, He, Xige, Yun, Yueying, Chen, Lu, Huang, Yajuan, Wu, Qiong, Qin, Xia, Wu, Haiyan, Wu, Jindi, Sha, Rina, Borjigin, Gerelt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adipose tissue is a crucial economically significant trait that significantly influences the meat quality and growth performance of domestic animals. To reveal the changes in adipose tissue metabolism during the growth of naturally grazing sheep, we evaluated the thickness, adipocyte morphology, fatty acid profile, and metabolite profile of subcutaneous adipose tissue (SAT) from naturally grazing Sunit sheep at 6, 18, and 30 months of age (referred to as Mth-6, Mth-18, and Mth-30, respectively). The fat thickness and adipocyte number were significantly increased with the growth of the sheep ( < 0.05), and the increase of which from Mth-18 to Mth-30 was less than that from Mth-6 to Mth-18. Additionally, the alpha-linolenic acid metabolism was enhanced and fatty acid (FA) elongation increased with growth. The metabolomic analysis revealed 76 differentially expressed metabolites (DEMs) in the SAT in different growth stages. Interestingly, we observed elongation of FAs in lipids correlated with sheep growth. Furthermore, the expression of acylcarnitines was downregulated, and fatty acid amides, aspartic acid, acetic acid and phosphocholine were upregulated in Mth-18 and Mth-30 compared to Mth-6. Altogether, the study found that the difference in SAT in Mth-6 was great compared to Mth-18 and Mth-30. An increase in fat deposition via adipocyte proliferation with the growth of the sheep in naturally grazing. The DEMs of acylcarnitines, fatty acid amides, aspartic acid, acetic acid, and phosphocholine emerged as potential key regulators of adipose tissue metabolism. These findings illustrate the variation in and metabolic mechanism of sheep adipose tissue development under natural grazing, thus providing valuable insights into improving the edible quality of sheep meat and developing the mutton sheep industry.
ISSN:2304-8158
2304-8158
DOI:10.3390/foods13040544