C9orf72/ALFA-1 controls TFEB/HLH-30-dependent metabolism through dynamic regulation of Rag GTPases

Author summary An expansion of repeated nucleotides in the non-coding region of the C9orf72 gene has been linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The repeat expansion leads to a reduced expression of the C9orf72 gene and loss of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2020-04, Vol.16 (4), p.e1008738-e1008738, Article 1008738
Hauptverfasser: Ji Yon Ju, Ugolino, Janet, Zhang Tao, Lu Jiayin, Kim, Dohoon, Wang Jiou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Author summary An expansion of repeated nucleotides in the non-coding region of the C9orf72 gene has been linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The repeat expansion leads to a reduced expression of the C9orf72 gene and loss of function of the C9orf72 protein may contribute to the pathogenesis. In this study, we identified a new mechanism through which C9orf72 influences nutrient sensing, autophagy, and metabolism. In the multi-cellular organism Caenorhabditis elegans, the C9orf72 orthologue regulates the activity of TFEB, a crucial transcriptional regulator of autophagic and lysosomal genes, through which the lipid metabolism and survival are influenced especially under nutrient stress conditions. The regulatory effect of C9orf72 on TFEB is conserved in mammals, and this is mediated by the dynamic regulation of the Rag GTPases by C9orf72. Given the critical role of the Rag GTPases in nutrient sensing and autophagy, we propose that the C9orf72 function is important for metabolic homeostasis in the cell and its deficiency can lead to compromised fitness under stress conditions. Nutrient utilization and energy metabolism are critical for the maintenance of cellular homeostasis. A mutation in the C9orf72 gene has been linked to the most common forms of neurodegenerative diseases that include amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we have identified an evolutionarily conserved function of C9orf72 in the regulation of the transcription factor EB (TFEB), a master regulator of autophagic and lysosomal genes that is negatively modulated by mTORC1. Loss of the C. elegans orthologue of C9orf72, ALFA-1, causes the nuclear translocation of HLH-30/TFEB, leading to activation of lipolysis and premature lethality during starvation-induced developmental arrest in C. elegans. A similar conserved pathway exists in human cells, in which C9orf72 regulates mTOR and TFEB signaling. C9orf72 interacts with and dynamically regulates the level of Rag GTPases, which are responsible for the recruitment of mTOR and TFEB on the lysosome upon amino acid signals. These results have revealed previously unknown functions of C9orf72 in nutrient sensing and metabolic pathways and suggest that dysregulation of C9orf72 functions could compromise cellular fitness under conditions of nutrient stress.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1008738