RNA-binding proteins signature is a favorable biomarker of prognosis, immunotherapy and chemotherapy response for cervical cancer
Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) still present a huge threaten to women's health, especially the local advanced patients. Hence, developing more effectiveness prognostic signatures is urgently needed. This study constructed and verified a robust RNA-bindin...
Gespeichert in:
Veröffentlicht in: | Cancer Cell International 2024-02, Vol.24 (1), p.80-80, Article 80 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) still present a huge threaten to women's health, especially the local advanced patients. Hence, developing more effectiveness prognostic signatures is urgently needed. This study constructed and verified a robust RNA-binding proteins (RBPs) related signature through a series of bioinformatics methods and explored the biological function of hub RBP in vitro experiments. As a result, the 10 RBPs signature was successfully established and could act as an independent prognostic biomarker in CESC patients, which displayed the highest sensitivity and specificity in prognosis prediction compared with other clinicopathological parameters. The risk model also presented good performance in risk stratification among CESC patients. Besides, a nomogram was constructed based on pathological stage and the risk signature and exhibited satisfactory accuracy in prognosis prediction. Functional enrichment indicated that the risk signature mainly participated in immune-related pathways and cancer-related pathways, and the infiltration level of immune cells and immune checkpoints showed a significantly higher degree in low-risk patients compared with high-risk patients. Notably, the 10 RBPs signature act as a novel biomarker in immunotherapy and chemotherapy response. In addition, PRPF40B was selected as hub RBP and its transcription and translation levels were obviously increased in CESC tissues, as well as Hela and Siha cells. Knockdown of PRPF40B inhibits the proliferation, migration and invasion of Hela and Siha cells in vitro. In conclusion, our research provides a noticeable strategy in prognostic prediction among CESC patients, which may illuminate the prospect of CESC patients' clinical outcome. |
---|---|
ISSN: | 1475-2867 1475-2867 |
DOI: | 10.1186/s12935-024-03257-w |