Tailoring nutrition therapy to illness and recovery

Without doubt, in medicine as in life, one size does not fit all. We do not administer the same drug or dose to every patient at all times, so why then would we live under the illusion that we should give the same nutrition at all times in the continuum of critical illness? We have long lived under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Critical care (London, England) England), 2017-12, Vol.21 (Suppl 3), p.316-316, Article 316
1. Verfasser: Wischmeyer, Paul E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Without doubt, in medicine as in life, one size does not fit all. We do not administer the same drug or dose to every patient at all times, so why then would we live under the illusion that we should give the same nutrition at all times in the continuum of critical illness? We have long lived under the assumption that critical illness and trauma lead to a consistent early increase in metabolic/caloric need, the so-called "hypermetabolism" of critical illness. What if this is incorrect? Recent data indicate that early underfeeding of calories (trophic feeding) may have benefits and may require consideration in well-nourished patients. However, we must confront the reality that currently ICU nutrition delivery worldwide is actually leading to "starvation" of our patients and is likely a major contributor to poor long-term quality of life outcomes. To begin to ascertain the actual calorie and protein delivery required for optimal ICU recovery, an understanding of "starvation" and recovery from starvation and lean body mass (LBM) loss is needed. To begin to answer this question, we must look to the landmark Minnesota Starvation Study from 1945. This trial defines much of the world's knowledge about starvation, and most importantly what is required for recovery from starvation and massive LBM loss as occurs in the ICU. Recent and historic data indicate that critical illness is characterized by early massive catabolism, LBM loss, and escalating hypermetabolism that can persist for months or years. Early enteral nutrition during the acute phase should attempt to correct micronutrient/vitamin deficiencies, deliver adequate protein, and moderate nonprotein calories in well-nourished patients, as in the acute phase they are capable of generating significant endogenous energy. Post resuscitation, increasing protein (1.5-2.0 g/kg/day) and calories are needed to attenuate LBM loss and promote recovery. Malnutrition screening is essential and parenteral nutrition can be safely added following resuscitation when enteral nutrition is failing based on pre-illness malnutrition and LBM status. Following the ICU stay, significant protein/calorie delivery for months or years is required to facilitate functional and LBM recovery, with high-protein oral supplements being essential to achieve adequate nutrition.
ISSN:1364-8535
1466-609X
1364-8535
DOI:10.1186/s13054-017-1906-8