Immunocontrolling Graphene Oxide Catalytic Nanogold Reaction and Its Application to SERS Quantitative Analysis

The gold nanoreaction between HAuCl4 and H2O2 is very slow at 50 °C, and the nanoenzyme of graphene oxide (GO) greatly catalyzes the nanoreaction to form gold nanoparticles (AuNPs) with high SERS activity in the presence of Vitoria blue 4R (VB4r) molecular probes, strong resonance Rayleigh scatterin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2017-10, Vol.2 (10), p.7349-7358
Hauptverfasser: Liang, Aihui, Li, Chongning, Wang, Xiaoliang, Luo, Yanghe, Wen, Guiqing, Jiang, Zhiliang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The gold nanoreaction between HAuCl4 and H2O2 is very slow at 50 °C, and the nanoenzyme of graphene oxide (GO) greatly catalyzes the nanoreaction to form gold nanoparticles (AuNPs) with high SERS activity in the presence of Vitoria blue 4R (VB4r) molecular probes, strong resonance Rayleigh scattering (RRS), and surface plasmon resonance (SPR) absorption effect. With the increase of GO, the SERS, RRS, and SPR absorptions were enhanced linearly due to the formation of more AuNPs. The rabit antibody of human chorionic gonadotropin (RHCG) strongly adsorbed on the GO surface to inhibit its catalysis. Upon addition of human chorionic gonadotropin (HCG), the RHCG is separated from the GO surface due to the formation of HCG-RHCG specific immunocomplexes, which led to the recovery of GO catalysis. Using the new strategy of immunocontrolling GO catalysis, three types of resonance methods including SERS, RRS, and surface plasmon resonance (SPR) absorption have been developed for detection of HCG.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.7b01335