Structure-guided discovery of anti-CRISPR and anti-phage defense proteins
Bacteria use a variety of defense systems to protect themselves from phage infection. In turn, phages have evolved diverse counter-defense measures to overcome host defenses. Here, we use protein structural similarity and gene co-occurrence analyses to screen >66 million viral protein sequences a...
Gespeichert in:
Veröffentlicht in: | Nature communications 2024-01, Vol.15 (1), p.649-649, Article 649 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bacteria use a variety of defense systems to protect themselves from phage infection. In turn, phages have evolved diverse counter-defense measures to overcome host defenses. Here, we use protein structural similarity and gene co-occurrence analyses to screen >66 million viral protein sequences and >330,000 metagenome-assembled genomes for the identification of anti-phage and counter-defense systems. We predict structures for ~300,000 proteins and perform large-scale, pairwise comparison to known anti-CRISPR (Acr) and anti-phage proteins to identify structural homologs that otherwise may not be uncovered using primary sequence search. This way, we identify a
Bacteroidota
phage Acr protein that inhibits Cas12a, and an
Akkermansia muciniphila
anti-phage defense protein, termed BxaP. Gene
bxaP
is found in loci encoding Bacteriophage Exclusion (BREX) and restriction-modification defense systems, but confers immunity independently. Our work highlights the advantage of combining protein structural features and gene co-localization information in studying host-phage interactions.
Bacteria use various defense systems to protect themselves from phage infection, and phages have evolved diverse counter-defense measures to overcome host defenses. Here, the authors use protein structural similarity and gene co-occurrence analyses for identification of new anti-phage and counter-defense systems. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-024-45068-7 |