Experimental phase determination with selenomethionine or mercury-derivatization in serial femtosecond crystallography

Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) holds enormous potential for the structure determination of proteins for which it is difficult to produce large and high-quality crystals. SFX has been applied to various systems, but rarely to proteins that have previ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IUCrJ 2017-09, Vol.4 (Pt 5), p.639-647
Hauptverfasser: Yamashita, Keitaro, Kuwabara, Naoyuki, Nakane, Takanori, Murai, Tomohiro, Mizohata, Eiichi, Sugahara, Michihiro, Pan, Dongqing, Masuda, Tetsuya, Suzuki, Mamoru, Sato, Tomomi, Kodan, Atsushi, Yamaguchi, Tomohiro, Nango, Eriko, Tanaka, Tomoyuki, Tono, Kensuke, Joti, Yasumasa, Kameshima, Takashi, Hatsui, Takaki, Yabashi, Makina, Manya, Hiroshi, Endo, Tamao, Kato, Ryuichi, Senda, Toshiya, Kato, Hiroaki, Iwata, So, Ago, Hideo, Yamamoto, Masaki, Yumoto, Fumiaki, Nakatsu, Toru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) holds enormous potential for the structure determination of proteins for which it is difficult to produce large and high-quality crystals. SFX has been applied to various systems, but rarely to proteins that have previously unknown structures. Consequently, the majority of previously obtained SFX structures have been solved by the molecular replacement method. To facilitate protein structure determination by SFX, it is essential to establish phasing methods that work efficiently for SFX. Here, selenomethionine derivatization and mercury soaking have been investigated for SFX experiments using the high-energy XFEL at the SPring-8 Angstrom Compact Free-Electron Laser (SACLA), Hyogo, Japan. Three successful cases are reported of single-wavelength anomalous diffraction (SAD) phasing using X-rays of less than 1 Å wavelength with reasonable numbers of diffraction patterns (13 000, 60 000 and 11 000). It is demonstrated that the combination of high-energy X-rays from an XFEL and commonly used heavy-atom incorporation techniques will enable routine structural determination of biomacromolecules.
ISSN:2052-2525
2052-2525
DOI:10.1107/s2052252517008557