Probing fibronectin-antibody interactions using AFM force spectroscopy and lateral force microscopy
The first experiment showing the effects of specific interaction forces using lateral force microscopy (LFM) was demonstrated for lectin-carbohydrate interactions some years ago. Such measurements are possible under the assumption that specific forces strongly dominate over the non-specific ones. Ho...
Gespeichert in:
Veröffentlicht in: | Beilstein journal of nanotechnology 2015-05, Vol.6 (1), p.1164-1175 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The first experiment showing the effects of specific interaction forces using lateral force microscopy (LFM) was demonstrated for lectin-carbohydrate interactions some years ago. Such measurements are possible under the assumption that specific forces strongly dominate over the non-specific ones. However, obtaining quantitative results requires the complex and tedious calibration of a torsional force. Here, a new and relatively simple method for the calibration of the torsional force is presented. The proposed calibration method is validated through the measurement of the interaction forces between human fibronectin and its monoclonal antibody. The results obtained using LFM and AFM-based classical force spectroscopies showed similar unbinding forces recorded at similar loading rates. Our studies verify that the proposed lateral force calibration method can be applied to study single molecule interactions. |
---|---|
ISSN: | 2190-4286 2190-4286 |
DOI: | 10.3762/bjnano.6.118 |