A Novel Manganese Ion Delivery Carrier Promotes Immune Cell Proliferation and Enhances Innate Immune Responses

Manganese is a transition metal that is an essential trace element for human health. Manganese ions (Mn2+), which serve as one of the most common transition metal ions, play vital roles in enhancing innate immune responses. However, immune agonists based on Mn2+ are poorly utilized in clinical trial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2024-09, Vol.9 (38), p.40226-40233
Hauptverfasser: Wang, Lingjuan, Tang, Tingting, Zuo, Kaiyue, Liu, Naiyu, Wei, Yingrui, Zhu, Xinjie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Manganese is a transition metal that is an essential trace element for human health. Manganese ions (Mn2+), which serve as one of the most common transition metal ions, play vital roles in enhancing innate immune responses. However, immune agonists based on Mn2+ are poorly utilized in clinical trials due to poor chemodynamics and adverse events. In this work, we designed a novel delivery carrier for loading manganese ions by constructing hFn-MT3­(Mn2+) protein nanoparticles (termed as NPs­(Mn2+)), which contained human ferritin heavy chain (hFn) and metallothionein-3 (MT3), induced by isopropyl β-d-thiogalactoside (IPTG) and manganese ions in the prokaryotic expression system. The NPs­(Mn2+) protein nanoparticles could not only stimulate immune cell proliferation but also activate innate immune responses via the cGAS-STING-IRF3 signaling pathway. Collectively, our results unveil a candidate strategy for delivering metal ions beyond Mn2+ and may broaden metal ion clinical use in the field of immunotherapies.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.4c06497