Energy-Aware Scheduling Based on Marginal Cost and Task Classification in Heterogeneous Data Centers

The energy consumption problem has become a bottleneck hindering further development of data centers. However, the heterogeneity of servers, hybrid cooling modes, and extra energy caused by system state transitions increases the complexity of the energy optimization problem. To deal with such challe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2021-05, Vol.14 (9), p.2382
Hauptverfasser: Ji, Kaixuan, Chi, Ce, Zhang, Fa, Anta, Antonio Fernández, Song, Penglei, Marahatta, Avinab, Wang, Youshi, Liu, Zhiyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The energy consumption problem has become a bottleneck hindering further development of data centers. However, the heterogeneity of servers, hybrid cooling modes, and extra energy caused by system state transitions increases the complexity of the energy optimization problem. To deal with such challenges, in this paper, an Energy Aware Task Scheduling strategy (EATS) utilizing marginal cost and task classification method is proposed that cooperatively improves the energy efficiency of servers and cooling systems. An energy consumption model for servers, cooling systems, and state transition is developed, and the energy optimization problem in data centers is formulated. The concept of marginal cost is introduced to guide the task scheduling process. The task classification method is incorporated with the idea of marginal cost to further improve resource utilization and reduce the total energy consumption of data centers. Experiments are conducted using real-world traces, and energy reduction results are compared. Results show that EATS achieves more energy-savings of servers, cooling systems, state transition in comparison to the other two techniques under a various number of servers, cooling modules and task arrival intensities. It is validated that EATS is effective at reducing total energy consumption and improving the resource utilization of data centers.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14092382