Circular olefin copolymers made de novo from ethylene and α-olefins
Ethylene/α-olefin copolymers are produced in huge scale and widely used, but their after-use disposal has caused plastic pollution problems. Their chemical inertness made chemical re/upcycling difficult. Ideally, PE materials should be made de novo to have a circular closed-loop lifecycle. However,...
Gespeichert in:
Veröffentlicht in: | Nature communications 2024-02, Vol.15 (1), p.1462-1462, Article 1462 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ethylene/α-olefin copolymers are produced in huge scale and widely used, but their after-use disposal has caused plastic pollution problems. Their chemical inertness made chemical re/upcycling difficult. Ideally, PE materials should be made de novo to have a circular closed-loop lifecycle. However, synthesis of circular ethylene/α-olefin copolymers, including high-volume, linear low-density PE as well as high-value olefin elastomers and block copolymers, presents a particular challenge due to difficulties in introducing branches while simultaneously installing chemical recyclability and directly using industrial ethylene and α-olefin feedstocks. Here we show that coupling of industrial coordination copolymerization of ethylene and α-olefins with a designed functionalized chain-transfer agent, followed by modular assembly of the resulting AB telechelic polyolefin building blocks by polycondensation, affords a series of ester-linked PE-based copolymers. These new materials not only retain thermomechanical properties of PE-based materials but also exhibit full chemical circularity via simple transesterification and markedly enhanced adhesion to polar surfaces.
Although several advances have been made in chemical Polyethylene (PE) re- and upcycling, energy-efficient and selective catalytic processes are still lacking. Here, the authors show coupling of an industrially relevant coordination copolymerization olefins with a functionalized chain-transfer agent, followed by modular assembly of the resulting telechelic polyolefin building blocks by polycondensation to afford ester-linked PE-based random and block copolymers which exhibit full chemical circularity. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-024-45219-w |