Scaffold Modifications in Erythromycin Macrolide Antibiotics. A Chemical Minireview
Clarithromycin and congeners are important antibacterial members of the erythromycin A 14-membered macrocyclic lactone family. The macrolide scaffold consists of a multifunctional core that carries both chemically reactive and non-reactive substituents and sites. Two main approaches are used in the...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2020-08, Vol.25 (17), p.3941 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Clarithromycin and congeners are important antibacterial members of the erythromycin A 14-membered macrocyclic lactone family. The macrolide scaffold consists of a multifunctional core that carries both chemically reactive and non-reactive substituents and sites. Two main approaches are used in the preparation of the macrolides. In semisynthesis, the naturally occurring macrocycle serves as a substrate for structural modifications of peripheral substituents. This review is focused on substituents in non-activated positions. In the total synthesis approach, the macrolide antibiotics are constructed by a convergent assembly of building blocks from presynthesized substrates or substrates prepared by biogenetic engineering. The assembled block structures are linear chains that are cyclized by macrolactonization or by metal-promoted cross-coupling reactions to afford the 14-membered macrolactone. Pendant glycoside residues are introduced by stereoselective glycosylation with a donor complex. When available, a short summary of antibacterial MIC data is included in the presentations of the structural modifications discussed. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules25173941 |