Cost function dependent barren plateaus in shallow parametrized quantum circuits
Variational quantum algorithms (VQAs) optimize the parameters θ of a parametrized quantum circuit V ( θ ) to minimize a cost function C . While VQAs may enable practical applications of noisy quantum computers, they are nevertheless heuristic methods with unproven scaling. Here, we rigorously prove...
Gespeichert in:
Veröffentlicht in: | Nature communications 2021-03, Vol.12 (1), p.1791-1791, Article 1791 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Variational quantum algorithms (VQAs) optimize the parameters
θ
of a parametrized quantum circuit
V
(
θ
) to minimize a cost function
C
. While VQAs may enable practical applications of noisy quantum computers, they are nevertheless heuristic methods with unproven scaling. Here, we rigorously prove two results, assuming
V
(
θ
) is an alternating layered ansatz composed of blocks forming local 2-designs. Our first result states that defining
C
in terms of global observables leads to exponentially vanishing gradients (i.e., barren plateaus) even when
V
(
θ
) is shallow. Hence, several VQAs in the literature must revise their proposed costs. On the other hand, our second result states that defining
C
with local observables leads to at worst a polynomially vanishing gradient, so long as the depth of
V
(
θ
) is
O
(
log
n
)
. Our results establish a connection between locality and trainability. We illustrate these ideas with large-scale simulations, up to 100 qubits, of a quantum autoencoder implementation.
Parametrised quantum circuits are a promising hybrid classical-quantum approach, but rigorous results on their effective capabilities are rare. Here, the authors explore the feasibility of training depending on the type of cost functions, showing that local ones are less prone to the barren plateau problem. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-021-21728-w |