Climate change and its influence on water systems increases the cost of electricity system decarbonization

The electric sector simultaneously faces two challenges: decarbonization to mitigate, and adaptation to manage, the impacts of climate change. In many regions, these challenges are compounded by an interdependence of electricity and water systems, with water needed for hydropower generation and elec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-11, Vol.15 (1), p.10050-14, Article 10050
Hauptverfasser: Szinai, Julia K., Yates, David, Sánchez-Pérez, Pedro A., Staadecker, Martin, Kammen, Daniel M., Jones, Andrew D., Hidalgo-Gonzalez, Patricia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The electric sector simultaneously faces two challenges: decarbonization to mitigate, and adaptation to manage, the impacts of climate change. In many regions, these challenges are compounded by an interdependence of electricity and water systems, with water needed for hydropower generation and electricity for water provision. Here, we couple detailed water and electricity system models to evaluate how the Western Interconnection grid can both adapt to climate change and develop carbon-free generation by 2050, while accounting for interactions and climate vulnerabilities of the water sector. We find that by 2050, due to climate change, annual regional electricity use could grow by up to 2% from cooling and water-related electricity demand, while total annual hydropower generation could decrease by up to 23%. To adapt, we show that the region may need to build up to 139 GW of additional generating capacity between 2030 and 2050, equivalent to nearly thrice California’s peak demand, and could incur up to $150 billion (+7%) in extra costs. The authors link water and electricity system models to evaluate how the electric grid can both adapt to climate change impacts and decarbonize, while also accounting for dependencies and climate vulnerabilities of the closely coupled water sector.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-54162-9