Multiphysics Modelling of the Mandel- Cryer Effect
In porous medium studies the Mandel-Cryer effect is known, describing non-monotonic pore-water pressure evolution in response to loading or to changed stress conditions. In a 2D poro-elastic model we couple the pore water hydraulics with mechanics (HM). The Mandel-Cryer effect is identified in parts...
Gespeichert in:
Veröffentlicht in: | The international journal of multiphysics 2016-01, Vol.10 (1) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In porous medium studies the Mandel-Cryer effect is known, describing non-monotonic pore-water pressure evolution in response to loading or to changed stress conditions. In a 2D poro-elastic model we couple the pore water hydraulics with mechanics (HM). The Mandel-Cryer effect is identified in parts of the model region that are far from the drainage boundary. At parts of the loaded boundary an even more complex pressure evolution is revealed. Variations of the Biot-parameter as the coupling parameter clearly indicate the relevance of the two-way coupling between the involved physical regimes. Hence the Mandel-Cryer effect is a typical result of multi-physical coupling. |
---|---|
ISSN: | 1750-9548 2048-3961 |
DOI: | 10.21152/1750-9548.10.1.11 |