Entropy Stable DGSEM Schemes of Gauss Points Based on Subcell Limiting
The discontinuous Galerkin spectral element method (DGSEM) is a compact and high-order method applicable to complex meshes. However, the aliasing errors in simulating under-resolved vortex flows and non-physical oscillations in simulating shock waves may lead to instability of the DGSEM. In this pap...
Gespeichert in:
Veröffentlicht in: | Entropy (Basel, Switzerland) Switzerland), 2023-06, Vol.25 (6), p.911 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The discontinuous Galerkin spectral element method (DGSEM) is a compact and high-order method applicable to complex meshes. However, the aliasing errors in simulating under-resolved vortex flows and non-physical oscillations in simulating shock waves may lead to instability of the DGSEM. In this paper, an entropy-stable DGSEM (ESDGSEM) based on subcell limiting is proposed to improve the non-linear stability of the method. First, we discuss the stability and resolution of the entropy-stable DGSEM based on different solution points. Second, a provably entropy-stable DGSEM based on subcell limiting is established on Legendre-Gauss (LG) solution points. Numerical experiments demonstrate that the ESDGSEM-LG scheme is superior in non-linear stability and resolution, and ESDGSEM-LG with subcell limiting is robust in shock-capturing. |
---|---|
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e25060911 |