Screening vs. gevolution: In chase of a perfect cosmological simulation code
We compare two competing relativistic approaches to the N-body simulation of the Universe large-scale structure. To this end, employing the corresponding alternative computer codes (“gevolution” and “screening”), we conduct a series of cosmological simulations in boxes of different sizes and calcula...
Gespeichert in:
Veröffentlicht in: | Physics letters. B 2022-03, Vol.826, p.136911, Article 136911 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We compare two competing relativistic approaches to the N-body simulation of the Universe large-scale structure. To this end, employing the corresponding alternative computer codes (“gevolution” and “screening”), we conduct a series of cosmological simulations in boxes of different sizes and calculate the power spectra of the scalar perturbation Φ, the frame-dragging vector potential B and the difference between scalar modes χ=Φ−Ψ. We demonstrate that the corresponding power spectra are in very good agreement between the compared schemes. For example, the relative difference of the power spectra for Φ is 0.04% maximum. Since the perturbed Einstein equations have much simpler form in the screening approach, the simulation with this code consumes less computational time, saving almost 40% of CPU hours. |
---|---|
ISSN: | 0370-2693 1873-2445 |
DOI: | 10.1016/j.physletb.2022.136911 |