Intranasal Delivery of Quillaja brasiliensis Saponin-Based Nanoadjuvants Improve Humoral Immune Response of Influenza Vaccine in Aged Mice

Increasing the effectiveness of vaccines against respiratory viruses is particularly relevant for the elderly, since they are prone to develop serious infections due to comorbidities and the senescence of the immune system. The addition of saponin-based adjuvants is an interesting strategy to increa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vaccines (Basel) 2024-08, Vol.12 (8), p.902
Hauptverfasser: Silveira, Fernando, García, Florencia, García, Gabriel, Chabalgoity, José A, Rossi, Silvina, Baz, Mariana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increasing the effectiveness of vaccines against respiratory viruses is particularly relevant for the elderly, since they are prone to develop serious infections due to comorbidities and the senescence of the immune system. The addition of saponin-based adjuvants is an interesting strategy to increase the effectiveness of vaccines. We have previously shown that ISCOM matrices from (IMXQB) are a safe and potent adjuvant. In this study, we evaluated the use of IMXQB as an adjuvant for the seasonal trivalent influenza vaccine (TIV) in an aged mice model. Herein, we show that subcutaneous injection of the adjuvanted vaccine promoted higher titers of IgM, IgG (and isotypes), and serum hemagglutination inhibition titers (HAI). Notably, aged mice immunized by intranasal route also produced higher IgG (and isotypes) and IgA titers up to 120 days after priming, as well as demonstrating an improvement in the HAI antibodies against the TIV. Further, experimental infected aged mice treated once with sera from adult naïve mice previously immunized with TIV-IMXQB subcutaneously successfully controlled the infection. Overall, TIV-IMXQB improved the immunogenicity compared to TIV by enhancing systemic and mucosal immunity in old mice conferring a faster recovery after the H1N1pdm09-like virus challenge. Thus, IMXQB nanoparticles may be a promising platform for next-generation viral vaccines.
ISSN:2076-393X
2076-393X
DOI:10.3390/vaccines12080902