Non-Uniform Clustering Algorithm for UWSNs Based on Energy Equalization

Underwater sensor nodes are usually deployed by ships, aircraft, etc., in random drops, and there is current movement in the underwater environment, which results in an uneven distribution of sensor nodes and thus, different energy consumption in each area of the network. In addition, the underwater...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-06, Vol.23 (12), p.5466
Hauptverfasser: Yi, Jinwang, Tang, Jie, Yuan, Fei, Qiao, Guanhao, Dai, Dongping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Underwater sensor nodes are usually deployed by ships, aircraft, etc., in random drops, and there is current movement in the underwater environment, which results in an uneven distribution of sensor nodes and thus, different energy consumption in each area of the network. In addition, the underwater sensor network also has a "hot zone" problem. To address the uneven energy consumption of the network caused by the above problem, the non-uniform clustering algorithm for energy equalization is put forward. Considering the residual energy, density and coverage redundancy of nodes, this algorithm selects the cluster heads and makes them more reasonably distributed. Additionally, according to the selected cluster heads, the size of each cluster is designed to equalize the energy consumption of the network during multi-hop routing. In this process, the residual energy of cluster heads and the mobility of nodes are considered, and real-time maintenance is performed for each cluster. The simulation results demonstrate that the proposed algorithm is effective in prolonging the network lifetime and balancing the network energy consumption; moreover, the network coverage maintenance is better than that of other algorithms.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23125466